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Thermal resistance at a solid/superfluid
helium interface
Aymeric Ramiere1†, Sebastian Volz2 and Jay Amrit1*

Kapitza1 in 1941 discovered that heat flowing across a solid
in contact with superfluid helium (<2K) encounters a strong
thermal resistanceat the interface.Khalatnikov2 demonstrated
theoretically that this constitutes a general phenomenon
related to all interfaces at all temperatures, given the depen-
dence of heat transmission on the acoustic impedance (sound
velocity× density) of each medium. For the solid/superfluid
interface, the measured transmission of heat is almost one
hundred times stronger than the Khalatnikov prediction. This
discrepancy couldbe intuitively attributed todi�use scattering
of phonons3 at the interface but, despite several attempts4–7,
a detailed quantitative comparison between theoretical and
experimental findings to explain the occurrence of scattering
and its contribution to heat transmission had been lacking.
Here we show that when the thermal wavelength λ of phonons
of the less dense medium (liquid 4He) becomes comparable
to the r.m.s. surface roughness σ , the heat flux crossing
the interface is amplified; in particular when σ ≈ 0.33λ, a
spatial resonantmechanismoccurs, as proposed byAdamenko
and Fuks8. We used a silicon single crystal whose surface
roughness was controlled and characterized. The thermal
boundary resistance measurements were performed from
0.4 to 2K at di�erent superfluid pressures ranging from
saturated vapour pressure (SVP) to above 4He solidification,
to eliminate all hypothetical artefact mechanisms. Our results
demonstrate the physical conditions necessary for resonant
phonon scattering to occur at all interfaces, and therefore
constitute a benchmark in the design of nanoscale devices9,10
for heat monitoring.

In the textbook example of wave propagation across a smooth
interface between two media of density ρ1 and ρ2, the transmission
coefficient11 at the interface is given by τ = 2Z1/(Z1+Z2), where
the acoustic impedance of each medium Zi=ρici, with ci being the
wave speed in medium i= (1, 2). In the acoustic mismatch (AM)
theory for thermal boundary resistance, Khalatnikov2 uses this
transmission coefficient to characterize heat conductance carried by
the different phononbranches (one longitudinal and two transverse)
across an interface. The AM theory agrees well in general with
the experimental findings, apart from the case where interfaces are
strongly acoustically mismatched—for example, the lead/diamond
interface12 and the solid/superfluid helium-4 interface at low
temperatures3. The anomalous thermal boundaryKapitza resistance
for these cases can differ by almost two orders of magnitude from
the AM theory predictions, which has triggered extensive studies
over decades.

Heat and sound in non-metal solids are mechanical vibrations.
Treating heat as sound, Adamenko and Fuks8 (AF) ascribed the
scattering of quantized vibrations of heat (phonons) to the scattering
of sound waves from rough surfaces. In both cases, the localized
surface roughness (characterized by the rootmean square roughness
height σ and characteristic dimension or correlation length ` of
the roughness) and the phonon thermal wavelength λ of the less
dense material play decisive roles in determining the nature of the
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Figure 1 | Schematic representation of the experimental cell. The optically
polished cross-sectional surface of a rod-shaped high-purity silicon single
crystal is sealed superfluid-leak-tight into a thin-walled stainless steel tube.
Three bare chipped RuO2 (Model RX-102A-BR) thermometers (T1,T2,T3)
are equally spaced on the lateral surface of the crystal. They are sensitive to
incident and reflected heat fluxes. A Manganin-wire heater (∼64�)
supplies a heat flux which runs parallel along the c-axis of the crystal and
crosses the [111] surface in contact with the superfluid. Liquid 4He
temperature (measured also by a RuO2 thermometer, TL) is regulated to
within<1 mK with the aid of a calibrated Ge (GR-200A) thermometer and
a 560� carbon resistor (heater), which is fixed to the copper support of
the cell. The superfluid pressure in the cell is monitored from the gas
handling panel at room temperature and read on a Bourdon manometer.
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Figure 2 | Kapitza resistance RK measurements. a, RK shows no apparent dependence on the acoustic impedance of superfluid 4He at di�erent
temperatures. The dashed lines are straight line fits to the data. b, Pressure dependence of RK at the minimum temperature point (0.78 K) of the 4He
melting curve. The pressure is varied from SVP to above the solidification pressure (25 bar). RK varies by nearly 12% (blue diamonds) before a first-order
transition in RK is seen (red circle) on the solidification of 4He. The dashed green line is a guide to the eye to highlight these features. The error bars are
mainly due to the relative uncertainties in the thermal conductivity of Si and in the temperature di�erence measurements. The AM model and the di�use
mismatch model predictions of RK for the solid 4He/Si interface are shown respectively by the dashed red line with the critical cone angle in solid 4He,
θC= 17◦ (Supplementary Information) and the orange line.

scattering. In the case of a solid/superfluid interface, Adamenko
and Fuks show that when the roughness height follows a Gaussian
distribution andwhen the condition (`/λ)≈0.3 is fulfilled, phonons
become ‘trapped’ by roughnesses and a new resonant phonon
mechanism becomes effective which carries a maximum amount of
energy across the interface. TheAF theory gained little attention and
several works13–15 up to now continue to speculate that the anomaly
arises from a predominance of non-specular scattering of phonons
by an unknown mechanism, still to be discovered.

Here we report a quantitative study which reveals the resonant
phonon scattering mechanism proposed by Adamenko and
Fuks; we demonstrate that when roughnesses of the order
of a few nanometres become comparable in size to phonon
wavelengths, resonant scattering is indeed dominant. The
dominant wavelength of phonons in liquid helium13 is given by
λ(P ,T )=(hcL(P)/3.83kBT ), where cL(P) is the pressure-dependent
speed of sound16 in helium and h is the Planck constant. By
performing measurements at different pressures and temperatures
we present a cross-check investigation of the roughness–wavelength
relationship. This work provides a clear insight into the physical
mechanism of heat transfer at the interface, clarifying the enigma
of the Kapitza anomaly. The present work is also an examination
of the phonon scattering from surfaces close to the ultimate high-
frequency regime (∼10 THz) found in room-temperature crystals.
Indeed, the dominant wavelengths of phonons in liquid helium
depend on cL(P), which is ∼20 times smaller than the speed of
sound in solid materials (∼5,000m s−1). Therefore, λ in superfluid
4He, which is of the order of ∼1.5 nm at 2K, is comparable to
phonon wavelengths in solid thermal devices whose predominant
phonon frequency lies in the∼10 THz range at room temperatures17
and above. The surface roughness–wavelength interaction criterion
established in this regime now becomes an essential tool for
manipulating and controlling heat in nanoscale devices in general.

The most direct method to access the thermal boundary
resistance is to measure the temperature difference across the
interface in the presence of a heat flux. We use a similar method,
but we instead regulate the temperature in liquid 4He to maintain it
to a constant value within<1mK and measure the effect of phonon
reflection at the interface on the thermometer T1 as the heat flux Q̇
across the interface is varied (see Fig. 1 and Supplementary Fig. 3 and
Supplementary Information). The thermal boundary resistance is
now given byRK(P ,T )=1T1/(1Q̇/S0), where the pressure in liquid
4He is varied from saturated vapour pressure (SVP) to about 25 bar,
S0 is the ideally smooth cross-sectional area and1T1 corresponds to
the temperature change due to a modification in the heat flux1Q̇.

Our experiments were performed using a silicon single crystal
with its (111) surface in contact with superfluid helium of
ultrahigh purity (99.999%). The superfluid pressure above SVP is
monitored by condensing 4He from room temperature. Details of
the experimental method for SVP pressure are given elsewhere18.
Precautions were taken to ensure that the statistical properties of
our sample surface fulfil the AF model requirements. As detailed
further (seeMethods), the AFmodel treats scattering from isotropic
small-scale surface roughnesses having a roughness height–
height correlation distribution which is Gaussian. The thermal
conductance across the rough interfaceR−1

ζ
, normalizedwith respect

to the conductance across an ideally smooth interface (Khalatnikov
theory) R−1K0, is derived to be R−1

ζ
/R−1K0 = 1+ (1/2)γ 2f (Θ), where

γ = (2σ/`) corresponds to the average inclination of roughness
with σ = 〈h2

〉
1/2, where h= ζ(r) at position r = (x , y) and f (Θ)

is a function representing the heat flux amplification depending
on Θ = (`/λ). For an ideally smooth surface, σ and, therefore, γ
equal zero, and hence the transmission is controlled by the acoustic
impedances of each medium. When the second term is dominant,
the transmission is controlled by both the roughness height σ
and the correlation length ` of the solid surface, and also by the
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Figure 3 | Surface roughness σ dependence on the dominant thermal
wavelength λ (in nm). The σ -values are determined from
our RK measurements using equation (1). The dashed line shows the
condition σ ≈0.33λ for resonant scattering at the interface. Monitoring the
superfluid 4He pressure allows phonon wavelengths at di�erent
temperatures to be rendered identical (see Supplementary Information).
This gives rise to the overlapping of some data points which corroborates
the relationship between σ and λ for resonant scattering.

dominant thermal wavelength in liquid helium λ. It is important to
note that both the mean inclination γ and f (Θ) independently play
decisive roles for the resonant effect to be preponderant. Further,
in the case of fine isotropic roughnesses studied here, `< λ and
f (Θ)=115.5Θ2 asΘ<1, and therefore R−1

ζ
now depends on σ and

λ only, and can be written as (see equation (5), Methods):

R−1
ζ

R−1K0
=1+231

(σ
λ

)2
(1)

Figure 2a shows our measurements of the Kapitza resistance RK,
which were performed as a function of pressure (SVP to 25 bar)
between 0.4 and 2K. The results show that at a fixed temperature
T = 0.78K the change in the pressure of liquid He modifies RK
by nearly 12%, as seen in Fig. 2b. At T > 1K, the effect of a
pressure change is negligible (Fig. 2a). On the other hand, at a
given pressure, RK undergoes a change of approximately two orders
of magnitude as the temperature is varied from 0.4 to 2K. These
results clearly show that the acoustic impedance of liquid He, which
changes from ZL=3,400 g s−1 cm−2 at SVP to ZL=6,200g s−1 cm−2
at 25 bar, has no detectable influence on the heat transmission at
the interface.

In the AF theory the surface roughnesses σ which come into play
in the resonant scattering mechanism are ‘selected’ by the thermal
wavelengths in liquid 4He. From our measurements, we determined
the σ values using equation (1) with λ(P , T ). In Fig. 3, these σ
values are plotted as a function of phonon wavelengths in liquid
He. Each symbol corresponds to measurements done at a given
temperature as the pressure is varied. The relationship between the
surface roughness and the phononwavelengths is strikingly evident.
The straight line fitting our data clearly confirms the relationship
σ ≈0.33λ as predicted by the AF theory for resonant scattering to
occur. The overlapping of the data points at different temperatures
and pressures confirms the role of He phonon wavelengths in the
natural selection mechanism which favours resonant scattering.
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Figure 4 | Interaction probability Pϕ(h) for a phonon of wavelength λ to
undergo resonant scattering from a roughness of height h. The
calculations are performed for di�erent λ values belonging to the
temperature and pressure ranges of the experiment. A pair of (P,T) values
for each wavelength λ is indicated. As λ∝cL(P)/T, di�erent pairs of
appropriately chosen (P,T) values yield identical λ values (see
Supplementary Fig. 1 and Supplementary Information). As the temperature
decreases and/or the pressure increases, Pϕ(h) decreases and covers an
increasing range of h, indicating a gradual onset of specular scattering as
the wavelengths increase. At very long wavelengths compared to h, the
scattering becomes specular.

We also emphasize the fact that σ values which take part in
the resonant scattering mechanism lie within the limited range
0.2–5 nm. The latter imposes a stringent condition on the robustness
of the technique used to analyse surface roughness used to confirm
the scattering mechanism.

To get a better understanding of the resonant scattering
mechanism, the probability Pϕ(h) for a phonon to interact with a
roughness height h is calculated following a normal distribution
(see Methods). In Fig. 4 we illustrate Pϕ(h) for different λ values
accessible in the pressure and temperature range of the experiment
(see Supplementary Information). As seen from Fig. 4, for λ=2 nm
(high-frequency acoustic phonons in liquid He), Pϕ(σ (λ)) attains
∼70% and has a sharp narrow width peak centred on h≈ 1 nm.
The predominance of resonant scattering here is understood by
the fact that the scattering is responsive to roughness heights of
∼1–2 nm only. Consequently, larger roughnesses do not induce
resonant phonon scattering. At lower temperatures and/or higher
pressures, λ increases (as acoustic frequencies decrease) and
Pϕ(σ (λ)) decreases. Phonons are now sensitive to a broader range
of h values up to a limit of ∼10 nm in our experiment. The
sensitivity of the scattering mechanism to the surface roughness
is clearly illustrated by the strong decrease in Pϕ(σ (λ)) from
∼70 to ∼10% for a wavelength change from 2 to 12 nm, as seen
in Fig. 4.

The surface roughness power spectral density (PSD) is the
Fourier transform of the height–height correlation function at
each scale length. By performing PSD analysis from atomic force
microscopy (AFM) images made at various locations on our sample
surface, we corroborate the scale lengths of roughnesses which are
effective in the scattering mechanism as predicted by the AF theory.
A typical two-dimensional PSD of our sample surface over an area
of 100 nm× 100 nm performed using the software WSxM (ref. 19)
is shown in Fig. 5. For clarity, log(PSD[q]) is plotted as a function of
d(in nm), rather than log(q), where q=d−1 is thewavenumber of the
surface roughness. For d > 10 nm the surface roughness saturates
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Figure 5 | Typical power spectral density (PSD) of our sample surface as a
function of scale length d. In the green background, d≤4 nm and the data
(orange) follow a Gaussian behaviour (red fit), justifying the applicability of
the AF model. The blue background covers scale lengths 4<d<20 nm,
where a typical fractal behaviour (blue fit) is found for smooth Si surfaces.
The inset shows AFM measurements (orange) and a fit (blue) to the
roughness height distribution of our sample.

to a constant limit. This explains the onset of specular scattering
as the temperatures are lowered below 0.5 K and as the wavelength
becomes greater than 10 nm.The present analysis suggests that, even
at lower temperatures (<0.3 K), a soft transition in the scattering
nature is expected to lead to a fully specular regime.

For d< 4 nm the PSD data are fitted with a Fourier transform
of the height–height correlation function, which now follows a
Gaussian distribution and is given by (σ 2

r.m.s.`
2/4π) exp(−`2/4d2),

with σr.m.s. ≈ 4.7 nm and the correlation length ` ≈ 1.5 nm. We
note that the fact that the Gaussian distribution is limited in the
range d<4 nm coincides remarkably with the interval of σ values
(0.5–3.5 nm) predicted by the AF theory as shown in Fig. 3. In the
intermediate domain where 4< d < 10 nm, the surface roughness
has a characteristic fractal behaviour and our data are fitted with
PSD ∝ d2−2H , where the Hurst exponent H = 0.73. The fractal
behaviour is clearly not representative of the roughness behaviour
when d<1 nm and d>10 nm.

To rule out the effect due to the presence of a hypothetical solid
layer7 of 4He at the interface which would better adapt the acoustic
impedance of liquid 4He to that of silicon (see Supplementary
Information), we performed the following experiment. We
measured the interfacial resistance RK at the minimum of the
melting curve of 4He (∼0.778K and ∼25 bar; ref. 20) as the
pressure in the superfluid was increased beyond the solidification
pressure. The results are shown in Fig. 2b and exhibit a sharp
drop in the Kapitza resistance from RK,L = (80 ± 7) cm2 KW−1

at a pressure of 24.5 bar for the superfluid 4He/Si interface to
RK,S = (42 ± 8) cm2 KW−1 after formation of solid helium at
∼25.2 bar. The observed first-order transition is due to a physical
change in the phonon transmission mechanism at the interface
due to the presence now of transverse modes in both media. It is
a clear signature that a layer of solid He, due to a van der Waals
potential, if present before solidification, cannot be part of an
impedance matching mechanism to explain discrepancies between
our measurements of RK (Fig. 2a) and the AM model predictions

for solid–superfluid interfaces. For our value of RK,S to be in good
agreement with the AM model, the critical cone angle in solid 4He
must be extended from θc≈3◦ (determined by the sound velocities
of each medium) to θc≈17◦ (see Supplementary Information).

In conclusion, the interpretation of our experimental data using
the AF model of resonant scattering of phonons from nanoscale
surface roughness is fully corroborated by the surface analysis of our
Si sample. This explanation is a significant step in understanding
resonant phonon scattering at surfaces and fully accounts for the
discrepancies among the multitude of experimental studies at low
temperatures. To quantify the pressure effect on RK at a given
temperature is important, as it confirms the surface roughness–
wavelength dependency in the resonant scattering mechanism. The
observation of a transition in RK with the solidification of 4He is
convincing proof of the absence of an effect due to a few atomic
layers thickness of solid He, before solidification of liquid 4He.
Future work at high pressure has to be performed to understand
our experimental value of RK between solid 4He and silicon, as
quantum effects, dislocations and defects present in solid 4He may
certainly impact heat flow at the interface. Above all, the veracity of
the AF theory in interpreting heat transmission at solid/superfluid
4He interfaces is now demonstrated, unravelling almost 70 years of
research on the origin of the anomalous Kapitza resistance.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Resonant scattering model summary. The key features of the AF model are
summarized here. A phonon, characterized by a monochromatic wave
ϕi=ϕo(z)ei(k.r−ωt)=ϕo(r ,z)e−iωt , is incident from liquid helium (medium 1) on a
rough solid surface. The roughness fluctuation height distribution is described by
ζ(r), where r=(x ,y) is the position in the (x ,y) plane. Part of the incident wave is
reflected back into medium 1 and part of the wave is refracted into medium 2
(solid), and each contribution is defined respectively by ϕr (r ,z)e−iωt and
ϕ2(r ,z)e−iωt . To calculate the transmission coefficient, the AF model follows the
same procedure as in the Khalatnikov model for an ideal interface, but with the
following new boundary conditions:

(∂ϕ1/∂z−∂ϕ2/∂z)− j∇r (ϕ1−ϕ2)=0 (2)

ρ1ϕ1−ρ2ϕ2=0 (3)

where ϕ1=ϕo+ϕr and j=∇rζ defines the roughness inclination at position r .
Equation (2) imposes the continuity of the normal component of the velocity ϑz at
z=ζ(r)=0, which now is modified to take into account the surface roughness.
Equation (3) is obtained from the usual continuity of the pressure gradient at
z=ζ(r)=0. It is important to note that a general treatment from arbitrarily rough
surfaces is extremely complex and Adamenko and Fuks limit their calculations to
isotropic small-scale surface irregularities for which k`<1 (or (`/λ)<1), where `
is the characteristic roughness length and the wavevector k=(2π/λ), with λ being
the thermal wavelength. Therefore, a perturbation theory approach is justified and
the wave potentials are Taylor expanded up to quadratic powers of ζ , that is,
ϕm(r ,ζ )=ϕm(r , 0)+(∂ϕm/∂z)ζ +(∂2ϕm/∂z2)ζ 2, wherem=(1,2). Substitution in
expressions (2) and (3) leads to integral equations for the amplitudes of ϕm in
powers of ζ . Now the average transmission coefficient τζ (k,θ) is given by the ratio
of the power per unit area crossing the interface 〈p(r ,z)ϑz (r ,z)〉=(ρ2ω/2)〈|ϕ2|

2
〉

to the incident power per unit area Einc=ρ1ω/2. We note that p(r ,z) is the local
pressure. Thus, τζ (k,θ)∝(ρ2/ρ1)〈|ϕ2|

2
〉 and it contains dependencies on thermal

frequencies (wavelengths) of phonons and surface roughness ζ(r). An explicit form
for τζ (k,θ) requires the surface properties to be statistically described. Under the
assumption of isotropic small-scale roughness indicated above, the height–height
roughness autocorrelation function is chosen to follow a Gaussian
distribution—that is, 〈ζ(r)ζ(r+d)〉=σ 2W (d), whereW (d)=e−d2/`2 . The
transmission coefficient of an incoming phonon of wavevector k, averaged over all
incident angles θ , is calculated to be F(k)=(2/3)[1+0.5γ 2ψ(k`)], where
γ =(2σ/`) and ψ(k`) represents the increase in the transmission depending on k
and `. The heat flux entering the solid is given by the usual expression, now
written as:

Q̇ζ =
2hcL
(2π)3c3t

(
ρ1

ρ2

) ∞∫
0

n(}cLk/kBT )F(k)k3dk

where ct is the transverse sound velocity in the solid and n(}cLk/kBT ) is the Planck
distribution for phonons in liquid He. Normalizing with respect to Khalatnikov’s
expression for the heat flux Q̇0 across an ideally smooth surface leads to
Q̇ζ /Q̇0=1+(1/2)γ 2ω(Θ), where ω(Θ)∝γ 2

∫
∞

0 n(k`/Θ)ψ(k`)k3dk defines the
temperature and pressure dependency of phonon scattering by roughnesses and
Θ=(`/λ) represents the dimensionless temperature. The resonant heat flux ω(Θ)
increases withΘ to reach a maximum when the phonon wavelength is three times
the correlation length, that is, (`/λ)≈0.33. Using the definition R−1K =dQ̇/dT , the
thermal boundary resistance across a rough interface normalized with respect to
that of an ideally smooth interface takes the general form:

R−1
ζ

R−1K0
=1+

1
2
γ 2f (Θ) (4)

where f (Θ) expresses temperature and pressure variations of ω(Θ). When
(k`/2)<1, that isΘ=(`/λ)<0.3, AF calculations yield ψ(k`)≈0.75(k`)2 and
f (Θ)≈115.5Θ2, where the numerical coefficient is due to constants, independent
of temperature and pressure. Now, the thermal boundary resistance due to all
phonon modes can be written in the form:

R−1
ζ

R−1K0
=1+57.75γ 2

(
`

λ

)2

(5)

The first term corresponds to non-resonant modes. In the second term, the (`/λ)
ratio ‘tunes’ the degree of resonance scattering. As there is a distribution of
wavelengths (and also a distribution of surface roughnesses), the resonance leads to
a superposition of scattered waves which diffract into the solid, carrying energy
into it.

Probability of phonon–roughness interactions Pϕ(h). The probability Pϕ(h) of
phonons having a dominant wavelength λ to interact with a given roughness height
h is calculated to follow a normalized Gaussian distribution centred at the mean
expectation value σ(λ) such that Pϕ(h)=1/

√
2πw exp[−{h−σ(λ)}2/2w2

],
where w is the standard deviation or width of the Gaussian and σ(λ) is given in
Fig. 3. The w associated with a value of σ(λ) is calculated using the roughness
height distribution ζ(h) (see inset in Fig. 5) obtained by AFM. For a given
value of σ(λ), we truncate ζ(h) symmetrically to zero such that the root mean
square roughness height 〈h2

〉
1/2 of the truncated histogram ζ ′(h) reaches

the value of σ(λ). The total width of ζ ′(h) now corresponds to 2w. This ensures
that∼95% of the phonons interact with roughness heights h confined within
σ(λ)±2w.

Helium-4 crystal growth and measurement technique. The melting curve of
helium-4 has a dip of approximately 8mbar at a temperature of (0.775±0.012)K
and a pressure of (24.985±0.005) atm (ref. 20). For temperatures above the
minimum point, the pressure in the cell (read on a Bourdon manometer) is
monitored directly by condensing helium through the gas handling system. The gas
goes through a nitrogen trap before injection into the cell. To ensure that solid
helium forms in the cell and on the Si surface, the superfluid 4He in the cell is first
pressurized to∼22 bar. Then a small heat flux (∼30 µW) is applied across the
interface and maintained constant throughout this experiment. The helium
temperature TL is now controlled to within∼1mK to the minimum
temperature as the pressure in the cell is increased at a rate not exceeding
∼0.2 bar per minute with the aid of a needle valve. The crystallization of 4He is
clearly observed, as it causes a temperature shift on all thermometers. The
estimated crystal growth rate does not exceed∼0.48mmmin−1. This filling rate
condition is respected so as to obtain the best possible helium crystal quality21. At
the minimum point there is no latent heat release; consequently, the total heat flux
crossing the interface remains unaltered as He solid is grown. The temperature
difference across the interface before and after solidification changes respectively
from1T=(TL−T1) to1T ′=(TSHe−T ′1), where TSHe is the temperature of solid
4He measured by thermometer TL. This change is directly proportional to the
change in RK from RK,L to RK,S with the solidification of 4He. The Kapitza resistance
at the solid 4He/Si interface is now given by RK,S=RK,L×(1T ′/1T ). We emphasize
that the contribution due to the solid 4He layer between the thermometer TL and
the interface does not exceed∼1 cm2 KW−1 and corresponds to an error of less
than 2.5%.
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