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Introduction

The influence of surface roughness on heat transport has 
emerged over the past decade as being crucial in affecting the 
thermal conduction in materials [1, 2]. Many experimental 
studies have demonstrated that surface roughness significantly 
reduces thermal conductivity in silicon nanowires [3–10]. In 
parallel, the rise of 2D materials and measurements of the 
thermal properties of graphene also highlighted the important 
role of edge roughness on nanoribbons [11, 12].

A clear understanding of phonon scattering at boundaries 
requires the surface state to be characterized. The morphology 
of a surface is generally defined by the root mean square 

height distribution σ, also called roughness, and the charac-
teristic roughness correlation dimension l. These parameters 
are generally determined from the Fourier transform of the 
autocorrelation function of the surface profile. Although these 
aspects were mentioned earlier by Lim et al [9] and Ghossub 
et al [6], it is only very recently that Maurer et al [13] have 
studied numerically the effect of the correlation length on the 
thermal conductivity and have shown that decreasing the cor-
relation length suppresses the thermal conductivity.

Experimentally, nanowires with rectangular cross sec-
tions or nanoribbons are cut out from a large membrane using 
an electron beam. The original membrane is almost atomi-
cally flat while the electron beam induces an edge roughness 
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Abstract
Phonon spectral energy transmission in silicon nanoribbons is investigated using Monte-Carlo 
simulations in the boundary scattering regime by changing the length and width geometrical 
parameters. We show that the transition frequency from specular scattering to diffuse 
scattering is inversely proportional to the edge roughness σ with a geometry independent 
factor of proportionality. The increase of the length over width ratio ζ leads to a decrease 
of the energy transmission in the diffuse scattering regime which evolves as ( )ζ+ −1 0.59 1. 
This trend is explained by developing a model of phonon energy transmission in the fully 
diffuse scattering regime which takes into account the probability for a diffusively scattered 
phonon to be directly transmitted from any position on the edge of the nanoribbon. This 
model establishes the importance of the solid angles in the energy transmission evolution 
with ζ. The transition from unity energy transmission in the specular scattering regime to 
reduced transmission in the diffuse scattering regime constitutes a low-pass frequency filter 
for phonons. Our simulations show an energy rejection rate better than 90% for high ζ, which 
paves the way for potential high performance filters. Filtering out high frequency phonons 
is of significant interest for phononic crystal applications, which use band engineering of 
phonons in the wave regime with low frequencies.
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of a few nanometers (see inset of figure 2) with a correlation 
length of the order of 100 nm [10, 14].

Several simulation methods have been used to investigate 
the impact of the roughness of phonon transport such as Green 
functions [15], phonon hydrodynamics [16], perturbation 
theory [17], wave packets [18] and the Boltzmann transport 
equation  (BTE) [19–22]. Concerning the latter, the Monte-
Carlo (MC) technique is often used to solve the BTE con-
sidering phonons as particles moving inside the nanostructure 
[13, 19, 23–28]. Klitsner et al [29] were the first to use the 
MC technique to simulate phonon transport in the boundary 
scattering regime (BSR) assuming a monochromatic phonon 
source and an arbitrary factor of specularity. More recently, 
Lacroix et al [25] have underlined the importance of boundary 
scattering but their MC simulations are mainly carried out 
near room temperature where internal phonon–phonon pro-
cesses dominate heat transport.

Up to now applications of thermal nanodevices have mainly 
been dedicated to thermal management of electronics [30] and 
thermoelectric modules [31, 32]. In this work we propose a 
new application which is a tunable low-pass phonon filter that 
becomes possible by controlling the geometry and the edge 
roughness of nanoribbons.

We simulate phonon–surface roughness interactions in 
nanoribbons using the MC technique to examine the spectral 
energy transmission as a function of the length over width 
ratio ζ. On the the one hand, we present evidence that diffuse 
scattering at surface boundaries enables the filtering of pho-
nons above a cut-off frequency that depends on the root mean 
square (rms) surface roughness σ and on ζ. On the other hand, 
we show that the higher ζ, the more high frequency phonons 
are attenuated, improving the filter performance.

Boundary scattering regime

In our model, phonon–boundary interaction is consid-
ered to be the only scattering mechanism occurring in the 
nanoribbon. This BSR is known to be applicable at low 
temperature because internal processes are proportional to 
power laws of the temperature [33]. Nevertheless, we can 
show that miniaturization of the devices inevitably leads to 
an increase of the number of interactions with the boundaries 
that can prevail over phonon–phonon processes even at room 
temperature.

Three main phonon scattering mechanisms occur in a 
crystal: impurity scattering with a relaxation time τi, boundary 
scattering with τB and phonon–phonon (p–p) processes with 
τp–p. The total phonon relaxation time τT is determined using 
Matthiesen’s rule

τ τ τ τ= + +− − − −
T

1
i

1
B

1
p–p

1� (1)

In this expression p–p processes include both Normal and 
Umklapp scattering. We consider the crystal to be almost 
defect free so that the impurity term in equation  (1) can be 
neglected. Therefore, there is a competition between p–p pro-
cesses and boundary scattering.

In order to neglect p–p processes with respect to boundary 
scattering we consider that the following condition must be 
satisfied

⩽τ τ10B p–p� (2)

The boundary scattering relaxation time is estimated at 

τ =− v d/B
1

g  where vg is the group velocity and d the char-

acteristic dimension, which is the width or thickness in a 
rectangular geometry. For numerical application, the most 
common material for electronic applications is silicon with 

 = −v 5930 m sg
1  [34]. The relaxation times associated with 

the p–p processes are calculated using Holland’s expres-
sions [27, 33] for longitudinal and transverse modes. These 
relaxation times depend on the temperature and the phonon 
frequency. For a system at a temperature T , a Planck-like fre-
quency distribution is associated but is generally not acces-
sible experimentally. A global behavior of this distribution 
is deduced by considering the frequency that contributes the 
most to the energy distribution. This definition leads to the 
dominant phonon wavelength ( ) λ = hv k T/ 2.82dom g B  [7, 35]. 
Consequently, the inequality of equation (2) defines the upper 
limit of the dimension  dp–p  above which the p–p interactions 
have to be taken into account at a given temperature.

At the opposite end, a lower limit of the dimension also 
exists under which the BSR disappears. Indeed, as the temper
ature and/or the characteristic dimension decreases, the wave-
length of phonons becomes comparable to d, leading to the 
onset of phonon confinement. In this case, the wave nature 
of phonons has to be taken into account. A treatment of the 
latter is not within the scope of the present study. It defines the 
lower dimension λ=dconf dom to avoid the confinement effects 
and to ensure that BSR is valid.

Figure 1 shows the BSR area, limited by dp–p and dconf rep-
resented with the solid red line and solid blue line respectively, 
as a function of the characteristic dimension of the system and 
the temperature. We have limited the lowest temperature to 10 
mK, which is accessible with a dilution refrigerator and the 
smallest dimension to 5 nm that is the fabrication limit today. 
We observe that the BSR, represented by the hatched area, 
forms a cone that enlarges when temperature decreases. Under 
~40 K the BSR is always predominant over other processes in 
a microwire even when d is larger than 10 μm. As T increases 
and d decreases the boundary scattering cones shrink to reach 
210 K for =d 5 nmconf .

The hatched area in figure 1 is the ideal zone to observe 
the effects of the BSR where other scattering processes can be 
ignored. In the proximity of the boundary limits of this area, 
the BSR still has a strong impact. Indeed, we can relax equa-

tion (2) with the equality τ τ=B p–p to obtain d*
p–p represented 

with the red dashed line in figure 1. Between dp–p and d*
p–p 

boundary scattering remains the main scattering mechanism 
but is progressively weakened as the p–p processes appear. The 
condition on the confinement effect can also be relaxed since 
Heron et al [7] observed no wave effects in silicon nanowires 
of 100 nm down to 0.3 K where λ = 340 nmdom . Thus, we can 
consider that the BSR is still present when λ<d 10 dom which 
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is represented by d*
conf with the blue dashed line in figure 1. 

The two relaxed conditions, d*
p–p and d*

conf define a larger cone 
for the BSR, depicted by the green area, that contains the 
room temperature for dimensions smaller than 10 nm.

The BSR represent the context of this study. We have 
shown that its range of existence is relatively broad and has 
therefore a practical interest for applications. In the rest of the 
paper we suppose that we are in the BSR.

Monte-Carlo method

We use a homemade MC code to simulate phonon transport 
in rectangular cross-sectional nanowires with smooth top 
and bottom surfaces and rough lateral surfaces (see inset of 
figure 2). From the energy transmission point of view this situ-
ation is equivalent to a 2D nanoribbon. Therefore, we simulate 
phonons only in the 2D (x; y) frame of reference.

At the beginning of the simulation, all phonons are situ-
ated at the nanoribbon’s entrance =x 00  (see figure 2). For 
each phonon, y0 is taken randomly in the [ ]−w w/2; /2  interval 
and the initial direction θ0 is also picked randomly in the 
half space within the nanoribbon. Then, the phonon moves 
ballistically inside the nanoribbon interacting only with the 
boundaries until it either reaches =x L, where it is counted 
as transmitted, or it goes back to =x 0 and is considered as 
backscattered.

The scattering mechanism at the boundary surfaces is 
quantified with the aid of the specularity probability parameter 
pS as defined by Soffer [36]. This model is a generalization 
of Ziman’s specularity parameter [37] that takes into account 
all impinging angles on the rough surface. It is assumed that 
the phonon wavelength λ is much bigger than the correlation 
length and that the rms surface roughness σ is smaller than 

 λ  [38]. These two conditions are also called randomly rough 

Figure 1.  Heat transfer regimes depending on the characteristic dimension and the temperature. Solid red line: dp–p, defines the upper limit 
of BSR above which p–p processes are not negligible. Dashed red line: d*

p–p, equilibrium between boundary scattering and p–p processes. 
Solid blue line: dconf, lower limit of the BSR below which confinement effects appear. Dashed blue line: d*

conf, relaxed condition for 
confinement effects. Green area: area where boundary scattering dominates. Hatched area: optimum area for filter applications.

Figure 2.  Schematic of the studied nanoribbon.

J. Phys. D: Appl. Phys. 49 (2016) 115306
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surface and weakly rough surface respectively. They define an 
analytical expression for the specularity parameter given by

⎛
⎝
⎜

⎞
⎠
⎟π

σ
λ

θ= −p exp 16 cosS
2

2

2
2

i� (3)

where θi is the angle of the incoming phonon relative to the 
normal of the average plane. The roughness is an input para
meter and λ π ω= v2 /g  where = −v 5930 m sg

1 is identical for 
all the phonons. When a phonon is scattered on a geometrical 
boundary two distinct outcomes can happen: specular scat-
tering, which conserves the incident angle, or diffuse scat-
tering where the phonon completely loses the information of 
its previous trajectory and scatters into an arbitrary direction 
within the medium as depicted by the half circle in figure 2. 
In order to select the outcome, a random number η is picked 
between 0 and 1. If ⩽η pS, the phonon undergoes a specular 
scattering otherwise it is diffusively scattered. In this latter 
case, a second random number θdiff, representing the diffused 
phonon angle, is uniformly picked within the half space of the 
nanoribbon [24].

As we study the phonon spectral transmission, we sweep 
the angular frequency over six orders of magnitudes from 0.1 
GHz to 70 THz to cover temperatures ranging from millikel-
vins to room temperature. The 70 THz upper limit is given by 
the size of the silicon unit cell that defines the minimum wave-
length. For each angular frequency ω we launch =N 10in

6 
phonons at the entrance of the nanoribbon adding up to an 
input energy ω= ∑ε �in in . Then, we assess the energy at the 
output of the nanoribbon ω= ∑ε �out out . The energy transmis-
sion is given by [39]:

( ) ( )
( )

∑

∑
ω

ω

ω
ω
ω

Γ = =
�

�
ε

N

N
out

in

out

in
� (4)

In the BSR the phonons can only modify their energy at 
the boundaries. We suppose that radiations are negligible 
before conduction and that the nanoribbon is in the vacuum. 
Moreover, we assume that phonons do not split up under 
the scattering process so that one impinging phonon leaves 
the rough surface also as one phonon. Therefore, the pho-
nons conserve their frequency at all times and the energy 
transmission becomes the ratio of the number of phonons 
going out over the phonons coming in. The large number of 
phonons Nin ensures robust statistics and low noise in our 
results.

Results and discussions

In figure 3(a), we plot the energy transmission ( )ωΓε  for dif-
ferent values of the roughness between 0.5 nm and 20 nm for 
a constant ratio of length over average width ζ = =L w/ 4. 
All the curves show the same trends with almost unity trans-
mission for the lowest frequencies that decreases rapidly to 
reach a minimum plateau at high frequencies. The nearly 
unity transmission is explained by the large predominance 
of the specular scattering at the boundaries and defines the 

specular scattering regime. The increase of diffuse scattering 
events logically decreases the energy transmission. For high 
frequencies, all phonons are diffusively scattered, leading to 
the observed minimum plateau and corresponding to the dif-
fuse scattering regime. The transition from the specular scat-
tering regime to the diffuse scattering regime is characterized 
by the scattering cut-off frequency ωscat that we define with 
the expression:

( )ωΓ =
Γ + Γ

ε
2

scat
spec diff

� (5)

where Γspec is the specular transmission equal to 1 by defi-
nition, and Γdiff is the transmission in the diffuse scattering 
regime. In the case ζ = 4, we see in figure 3(a) that Γ = 0.38diff  
so that ωscat is obtained for Γ =ε 0.72. We observe that the 
higher the roughness, the lower ωscat reflecting the properties 
of equation  (3). Our simulations give more insights of this 
phenomenon as displayed in figure 2(b) which shows that ωscat 
is inversely proportional to the roughness. Now, we can write 
ω σ= A/scat  and we find =A 2.0 THz nm. This coefficient A 
tells us that changing the roughness by 1 nm leads to a shift of 
2 THz in the scattering cut-off frequency.

The rapid transition from specular scattering to the diffuse 
scattering leads to the interesting concept of phonon frequency 
filtering. By analogy with sound, we define an attenuation of 
the phonon energy intensity as:

( ) ( )α ω ω= − Γε10 log� (6)

A standard criterion to obtain a filter is that the attenuation must 
be superior to 3 dB [40]. It also corresponds to 50% of signal 
rejection. Therefore we define the filter cut-off frequency ωfilt 
at ( )ωΓ =ε 0.5filt . Figure 3(b) shows that, as for the scattering 
cut-off frequency, we obtain a linear dependence between the 
filter cut-off frequency and the inverse of the roughness, that is 
ω σ= B/filt  with =B 5.8 THz nm. This observation offers the 
possibility of precise control on the filter cut-off frequency by 
nanoengineering the edge roughness.

Figure 4 shows ( )ωΓε  for various ζ ranging from 1 to 50 
while the roughness is held constant at 4 nm. The transmis-
sion in the specular scattering regime remains equal to unity 
but the diffuse scattering regime Γdiff becomes smaller as ζ 
increases. We also notice that the transition region expands 
with increasing ζ so it progressively pushes the specular scat-
tering regime to lower frequencies and the diffuse scattering 
regime to higher frequencies. Consequently, the filter cut-off 
frequency ωfilt decreases with the increase of ζ. These behav-
iours can be explained by the increase of the number of inter-
actions between a phonon and the boundaries with the increase 
of ζ. Indeed, more scattering events increase the probability 
for the phonons to be diffusively scattered, thereby reducing 
the range of the specular scattering regime and lowering Γdiff.

In the fully established diffuse scattering regime, the dimi-
nution of Γdiff with ζ is quantified in figure 5(a). As we are 
mostly interested in the filtering capacities of the nanorib-
bons, we convert the energy transmission Γdiff into attenuation 
αdiff using equation  (6). The 3 dB limit, to characterize the 
nanoribbon as an effective filter, is exceeded for    ζ > 2. The 
filter efficiency increases as ζ increases and it goes beyond 
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10 dB (90% of rejection) for ζ> 80. This value is completely 
reasonable since silicon nanowires with ζ exceeding 200 are 
commonly fabricated [3, 8, 14, 31]. For the practical purpose 
of calculating the maximum attenuation, our MC simulations 
can be fitted by the power law curve ( ) ( )ζ ζΓ = + −1diff

0.59 1.
In order to give a physical explanation to our MC points 

(black dots) in figure 5(a), we develop here a theory on the 
phonon transport in the fully diffuse scattering regime. 
Inherent to our simulations, we can distinguish two kinds 
of phonons: the first are phonons that cross the nanoribbon 
without interacting with its boundaries and the second are 
phonons that undergo at least one scattering event (necessarily 
diffuse since we are in the fully diffuse BSR). They are noted 
Γcross and Γscat respectively. These two contributions are com-
plementary so that we can write

( ) ( ) ( )ζ ζ ζΓ = Γ + Γdiff cross scat� (7)

We theoretically determine these two terms by considering 
their solid angles with respect to the entrance ( =x 0) and the 
output ( =x L) of the nanoribbon. A phonon at the entrance 
of the nanoribbon sees the output with a solid angle Ωcross 
(see inset of figure  5(a)). Statistically, the average initial 
position of the phonons is at the midpoint =y 0, so we have 

[ ( )]Ω = w Larctan / 2cross . This solid angle is then normalized 
to obtain the crossing energy transmission:

( )
⎛
⎝
⎜

⎞
⎠
⎟ζ

π ζ
Γ =

2
arctan

1

2
cross� (8)

Equation (8) is plotted with the red curve in figure  5(a). 
For ζ< 1 our model of phonons crossing the nanoribbon is in 

Figure 3.  Impact of surface roughness for ζ = =L w/ 4. (a) Monte-Carlo simulations of the spectral energy transmission for roughnesses 
between 0.5 nm and 20 nm. Dashed line: cut-off frequency for filter applications. Dotted line: cut-off frequency for transition between 
specular scattering and diffuse scattering. (b) Evolution of the two cut-off frequencies as a function of the inverse of the roughness.

J. Phys. D: Appl. Phys. 49 (2016) 115306
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very good agreement with the simulation results. But, Γcross 
decreases very rapidly and becomes negligible for ζ> 10.

For a phonon being scattered at any position x on a boundary 
of the nanoribbon, we define two solid angles ( )Ω xin  and 

( )Ω xout . ( )Ω xin  is the solid angle corresponding to the entrance 
of the nanoribbon as seen by the phonon at the scattering posi-
tion x. Reciprocally, ( )Ω xout  is the solid angle corresponding to 
the output of the nanoribbon as seen by the phonon at position 
x. As the scattering regime is fully diffusive, when a phonon 
is scattered on a boundary, it has the same chance to go in any 
direction in the half space within the nanoribbon. Therefore, 
the probability for a phonon to go directly, i.e.without being 
scattered anymore, to the entrance from its scattering location 
is proportional to ( )Ω xin . On the other hand, its probability to 
be directly transmitted is proportional to ( )Ω xout . A simple geo-
metrical analysis gives ( ) [ ( )]Ω = −x w L xarctan /out . Taking 
into account all possible scattering locations leads to the int

egral ( ) ( ) [ ( ) ( ) ]∫ζ ζ ζ ζΓ ∝ Ω ∝ + +x xd arctan 1/ ln 1 /2scat out
2 . 

From a strict mathematical point of view, this integral should 
depend on both x and width w but it cannot be calculated ana-
lytically. This difficulty can be overcome if we consider a con-
stant width that will only introduce a shift in Γscat that can be 
incorporated in the integral constants. As a result, we obtain 
finally:

( ) ( )
⎛
⎝
⎜

⎞
⎠
⎟ζ ζ
ζ

ζΓ = + +C
D

arctan
1

2
ln 1scat

2� (9)

where C and D are the constants to be determined. The arctan 
term in this expression represents the increase of the energy 
transmission thanks to the scattering events that are now taken 
into account. This term quickly saturates to reach a plateau as 
each time a phonon is scattered it can be reflected in any direc-
tion. In contrast, the logarithm term accounts for the backscat-
tering that reduces the energy transmission.

The coefficients were deduced by fitting the curve 
( ) ( )ζ ζΓ − Γdiff cross  as written in equation  (7) and we find 
=C 0.40 and = −D 0.07. Using these values, ( )ζΓscat  is rep-

resented in figure 5(a) with the blue line. At the origin, as no 
edges are present so all phonons cross the nanoribbon directly, 
we have ( )ζΓ = =0 0scat . By increasing ζ, Γscat also increases 
because phonons are transmitted after being scattered as 
explained above. Γscat reaches Γcross for ζ≈ 1 and continues to 
increase to reach a maximum at ζ≈ 2 where Γcross and Γscat 
account for 1/3 and 2/3 respectively of the diffusive energy 
transmission Γdiff. For ζ> 2, Γscat decreases to finally give the 
decreasing tendency of Γdiff for high ζ. Finally, we sum Γcross 
and Γscat as we have calculated to obtain the black dashed curve 
in figure 5(a). We observe that the theoretical curve is in very 
good agreement with the black points of the MC simulations.

Physically, the behavior at high ζ can be understood with 
the two solid angles previously defined, namely ( )Ω xin  and 

( )Ω xout . Logically, as long as the phonon is in the first half of 
the nanoribbon ( <x L /2) we have ( ) ( )Ω >Ωx xin out , so it has 
a higher probability to be backscattered than transmitted. In 
contrast, when the scattering event occurs in the second half 
of the length, the phonon has a greater chance to be trans-
mitted. But there are less phonons available in the latter case 
because a portion of the phonons has already been backscat-
tered. Consequently, the final outcome is that the increase of 
ζ reduces the transmitted energy in the fully diffuse scattering 
regime.

Figure 5(b) shows the evolution of the two cut-off frequen-
cies ωscat and ωfilt as a function of ζ for a constant roughness 
σ = 4 nm. The filter cut-off frequency ωfilt shifts to lower fre-
quencies by ~85% as ζ is increased from 2 to 30. On the other 
hand, the specular to diffuse scattering transition frequency 
ωscat decreases by ~40% in the same ζ range. As ζ increases, 
Γdiff tends to zero so the two cut-off frequencies are slowly 
converging to zero.

Figure 4.  Monte-Carlo simulations of the spectral energy transmission for different ζ from 1 to 50 with σ = 4 nm. The filter is effective for 
Γ <ε 0.5 represented by the dashed line.

J. Phys. D: Appl. Phys. 49 (2016) 115306
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The linear dependence of the cut-off frequency as a func-
tion of the inverse of the roughness, as shown in figure 2(b), 
can be found for all length over width ratios ζ. As a result, the 
slope can be determined knowing one single cut-off frequency 
for a given ζ. Therefore, by multiplying the cut-off frequencies 
plotted in figure 4(b) with the roughness, which is here equal to 
4 nm, we obtain the coefficients A and B for any dimension ζ.

Conclusion

We have examined the role of geometry and surface roughness 
when boundary scattering is predominant during phonon energy 
transmission in nanoribbons. Our analysis goes beyond confirming 
the intuitively accepted tendency that transmission decreases with 
length. We have shown that the transition frequency ωscat from 
specular to diffuse scattering varies as the inverse of the rms sur-
face roughness σ for a nanoribbon of a given L w/  ratio. Further, 
we have demonstrated that an important phonon filtering effect 
is present. The latter is characterized by a cut-off frequency ωfilt, 

which is also proportional to σ1/ . Moreover, our results show that 
it is possible to control these cut-off frequencies and attenuation by 
engineering σ and L w/ . We have established a theory that success-
fully describes the energy transmission in the fully diffuse scat-
tering regime. Recently, Alaie et al [41] reported measurements of 
coherent phonon scattering at room temperature in 2D phononic 
crystals. They showed that deviation from the incoherent scat-
tering is low because only long wavelength phonons are affected 
by the crystal periodicity and these phonons represent only a few 
percent of the total spectrum. We believe that this effect can be 
strongly enhanced by introducing a low-pass phonon filter as we 
have demonstrated. Further studies are being conducted with dif-
ferent geometries in order to reject low frequency phonons and 
obtain a band-pass filter.
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Figure 5.  Impact of ζ in the diffuse scattering regime for σ = 4 nm. (a) Monte-Carlo simulations of the diffuse energy transmission Γdiff 
(black dots). Red line: transmission of phonons crossing the nanoribbon without interacting with boundaries (equation (8)). Blue line: 
transmission of diffusely scattered phonons at boundaries (equation (9)). (b) Cut-off frequencies for filter (black squares) and boundary 
scattering (red circles).
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